The results of our structural analysis confirm the indications of ${ }^{14} \mathrm{~N}$ NQR measurements, thus explaining the anomalies in the quadrupole parameters $\left|e^{2} q Q\right|$ and η in m-cyanoaniline and p-cyanoaniline.

This work was supported by the Consiglio Nazionale delle Ricerche (CNR), Rome.

References

Casado, J., Nygard, L. \& Sørensen, G. O. (1971). J. Mol. Struct. 8, 211-224.
Colapietro, M., Domenicano, A., Marciante, C. \& Portalone, G. (1981). Acta Cryst. B38, 387-394.
Colligiani, A. \& Ambrosetti, R. (1977). Mol. Phys. 33. 1131-1154.
Colligianl, A., Ambrosetti, R., Angelone, R. \& Oja, T. (1975). Proceedings of the Second International Symposium on $N Q R$ Spectroscopy, edited by A. Colligianl, pp. 239-249. Pisa: A. Vallerini.

Domenicano, A., Mazzeo, P. \& Vaciago, A. (1976). Tetrahedron Lett. pp. 1029-1032.
Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975a). Acta Cryst. B31, 221-234.
Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975b). Acta Cryst. B31, 1630-1641.
International Tables for X-ray Cry'stallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
lister, D. G., Tyler, J. K., Høg, J. H. \& Wessel Larsen, N. (1974). J. Mol. Struct. 23, 253-264.

Main, P., Woolfson, M. M. \& Germain, G. (1971). mULTAN. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs of York, England, and Louvain, Belgium.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Centre. Univ. of Maryland, College Park, Maryland.
Townes, C. H. \& Dailey, B. P. (1949). J. Chem. Phy's. 17, 782-796.

Acta Cryst. (1982). B38, 1480-1485

The Structures of 2-Hydroxy-5-methylbenzoic Acid and Dimorphs of 2,5-Dihydroxybenzoic Acid

By Masao Haisa, Setsuo Kashino, Shin-Ichi Hanada, Kiyoshi Tanaka, Shigeru Okazaki and Masahiko Shibagaki
Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 10 August 1981; accepted 16 November 1981)

Abstract

The crystal structures of 2-hydroxy-5-methylbenzoic acid (1), $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$, and the ordered [2(o)] and disordered $[2(d)]$ forms of 2,5-dihydroxybenzoic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4}$, have been determined. The crystal data are: $P 2_{1} / a, a=21.24$ (2), $b=5.114$ (7), $c=3.307$ (9) A, $\beta=103.76(8)^{\circ}, Z=4, D_{x}=1.311, D_{m}=1.31 \mathrm{Mg}$ m^{-3}, m.p. $424-425.5 \mathrm{~K}$ for $1 ; P 2_{1} / a, a=23.945$ (2), $b=4.908(1), c=5.621$ (1) $\AA, \beta=100.981(8)^{\circ}, Z=4$, $D_{x}=1.578, D_{m}=1.57 \mathrm{Mg} \mathrm{m}^{-3}$, m.p. $481-483 \mathrm{~K}$ for 2(o); and $P a, a=11.229$ (2), $b=11.830$ (3), $c=4.966$ (4) $\AA, \beta=90.50(3)^{\circ}, Z=4, D_{x}=1.552$, $D_{m}=1.55 \mathrm{Mg} \mathrm{m}^{-3}$, m.p. $488-490 \mathrm{~K}$ for $2(d)$. The final R values for $1,2(o)$ and $2(d)$ were $0.073,0.035$ and 0.039 for 904,961 and 960 non-zero reflexions, respectively. Molecules of 2 show a quinonoid structure as found in salicylic acid. The crystal structures of 1 and $2(o)$ are of the benzoic acid type, and that of $2(d)$ is

of the salicylic acid type. The crystal structures of 1 , $2(o)$ and $2(d)$ are mainly determined by van der Waals interactions between the acid dimers, and the hydrogen bonding of the phenolic hydroxylic groups plays only an additional role. The morphotropism of benzoic acids is discussed.

Introduction

The present work on benzoic acids forms part of a systematization of the crystal structures of aromatic compounds (Haisa, 1978). The crystal structures of monocarboxylic acids have recently been discussed on the basis of morphotropism (Kashino \& Haisa, 1980). The crystal structures of the title compounds have been examined in order to see the effects on them of the phenolic hydroxylic groups.

Table 1. Experimental details

Crystal	1	2(o)	2(d)
Morphology	Prisms elongated along \mathbf{b}, bounded by $\{001\},\{100\}$, $\{20 \overline{1}\}$ and $\{010\}$	Plates developed $\{100\}$, elongated along b	Prisms elongated along \mathbf{c}, bounded by $\{100\}$ and \{010\}
$\mu(\mathrm{Cu} \mathrm{Ka})\left(\mathrm{mm}^{-1}\right)$	0.86	1.15	1.13
Dimensions of crystals used (mm)	$0.23 \times 0.70 \times 0.11$	$0.13 \times 0.23 \times 0.13$	$0.08 \times 0.10 \times 0.19$
	$0.20 \times 0.40 \times 0.15$		
Reflexions to be measured	1674	968	998
Non-zero reflexions	904	961	960

Experimental

Crystals of 1 and $2(o)$ were grown from aqueous solutions by slow evaporation. Crystals of $2(d)$ were obtained from a mixed solution of chloroform and acetone ($3: 1$ in volume). The morphology of the crystals and the experimental details are given in Table 1.

Intensity data of 1 were collected on equi-inclination Weissenberg photographs for the layers $h 0 l$ to $h 4 l$ and $h k 0$ to $h k 3$ using $\mathrm{Cu} K \alpha$ radiation $(\lambda=1.5418 \AA)$, and visually estimated.

The data of $2(o)$ and $2(d)$ were collected on a Rigaku four-circle diffractometer. The intensities were measured up to $2 \theta=120^{\circ}$ with the $\omega-2 \theta$ scan method (scan speed $4^{\circ} \min ^{-1}$ in 2θ; scan range in $2 \theta: 1 \cdot 2^{\circ}+$ $0.15^{\circ} \tan \theta$) using Ni -filtered Cu radiation at 40 kV and 200 mA . Background was measured for 5 s on either side of the peak. Three reference reflexions showed no intensity deterioration. Reflexions larger than $\sigma(F)$ were used in the refinement as non-zero reflexions.

The intensities were corrected for Lorentz and polarization factors (and spot shape for visual data), but not for absorption.

Structure determination and refinement

The structures were solved by the Patterson method. The locations of the H atoms were determined from the difference syntheses. The refinements were made by block-diagonal least-squares calculations.

For 1 and 2(o), an extinction correction was applied at the stages of $R=0.091$ and 0.043 respectively for the five strongest reflexions according to the formula $I_{\text {cort }}=I_{\text {obs }} /\left(1-g I_{\text {obs }}\right)$, where g was 4.75×10^{-5} for 1 and 3.50×10^{-5} for $2(o)$. Subsequent refinements reduced R for the non-zero reflexions to 0.073 for 1 , and 0.035 for $2(o)$. The quantity minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, with $w=1.0$ for $\left|F_{o}\right| \leq F_{\max }$ and $\left(F_{\max } /\left|F_{o}\right|\right)^{2}$ for $\left|F_{o}\right|>F_{\text {max }}$, where $F_{\text {max }}$ was $8 \cdot 0$ for both 1 and 2(o).

For 2(d), the systematic absence was $h 0 l$ for h odd. The $0 k 0$ reflexions with k odd were very weak, but significant (Table 2). Based on this fact, $Z=4$ and the Patterson map, the structure was pseudo- $P 2_{1} / a$. A
difference Fourier map at $R=0.073$ showed disordering of the H atoms of the 5-hydroxyl groups (Fig. 1). After an extinction correction with $g=2.30 \times 10^{-5}$ for the five strongest reflexions, the least-squares refinement $\left(F_{\max }=12 \cdot 0\right)$, including the H atoms with the occupancy factor of $0 \cdot 5$, gave a final $R=0.039$. Refinement of the occupancy factor was not carried out. The refinement assuming $P 2_{1} / a$ increased R to 0.048 .

Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). The computations were carried out at the Okayama University Computer Center, and at the Crystallographic Research Center, Institute for Protein Research, Osaka University. The programs used were SIGM, HBLS-V and DAPH (Ashida, 1973) and

Table 2. Observed and calculated structure factors $(\times 10)$ for $0 k 0$ reflexions of $2(d)$

k	$\left\|F_{o}\right\|(\sigma)$	$\left\|F_{c}\right\|$	k	$\left\|F_{o}\right\|(\sigma)$	$\left\|F_{c}\right\|$
1	$17(2)$	13	8	$68(2)$	70
2	$91(1)$	96	9	0	15
3	$11(4)$	9	10	$79(2)$	79
4	$13(4)$	12	11	$9(8)$	9
5	$13(4)$	13	12	$49(2)$	55
6	$413(5)$	412	13	0	6
7	$12(12)$	15			

Fig. 1. Difference Fourier map for $2(d)$ at the stage of $R=0.073$, showing the disorder at $\mathrm{H}(11)$. Contours are at intervals of 0.1 e \AA^{-3} starting at $0.1 \mathrm{e} \AA^{-3}$. The molecular frames are based on the final positional parameters.

Table 3. Final atomic parameters (positional $\times 10^{4}$, for $\mathrm{H} \times 10^{3}$) with e.s.d.'s in parentheses

MOLCON (Fujii, 1979). The final atomic parameters are listed in Table 3.*

Description and discussion of the structures

The projections of the crystal structures and the numbering of the non- H atoms are shown in Fig. 2.

[^0]Table 4. Geometry of the hydrogen bonds (lengths in \AA and angles in degrees)

	1	2(o)	$2($	
(1) Intramolecular				
			A	B
$\mathrm{O}(10) \cdots \mathrm{O}(8)$	$2 \cdot 615$ (4)	2.576 (1)	$2 \cdot 623$ (4)	$2 \cdot 639$ (4)
$\mathrm{H}(10) \cdots \mathrm{O}(8)$	1.58 (7)	1.72 (2)	1.86 (5)	1.80 (5)
$\mathrm{O}(10)-\mathrm{H}(10) \cdots \mathrm{O}(8)$	143 (6)	148 (2)	141 (4)	148 (5)
(11) Intermolecular				
(a) Between carboxylic groups of				
	i and ii	i and ii	A and B	B and A
$\mathrm{O}(9) \cdots \mathrm{O}(8)$	$2 \cdot 680$ (4)	2.717 (1)	2.665 (4)	$2 \cdot 670$ (4)
$\mathrm{H}(9) \cdots \mathrm{O}(8)$	1.62 (6)	1.74 (2)	1.81 (4)	1.55 (6)
$\mathrm{O}(9)-\mathrm{H}(9) \cdots \mathrm{O}(8)$	177 (5)	176 (2)	179 (4)	170 (5)
(b) Between 5 -hydroxylic groups of				
		i and iv	$B^{\text {l }}$ and $A^{\text {i }}$	A^{i} and B^{itI}
$\mathrm{O}(11) \cdots \mathrm{O}(11)$		2.768 (2)	2.722 (6)	2.768 (6)
$\mathrm{H}(11) \cdots \mathrm{O}(11)$		1.89 (2)	1.96 (11)	1.86 (11)
$\mathrm{O}(11) \cdots \mathrm{H}(11 \mathrm{D})$		-	1.81 (14)	1.88 (13)
$\mathrm{O}(11)-\mathrm{H}(11) \cdots \mathrm{O}(11)$		170 (2)	135 (9)	146 (9)
$\mathrm{O}(11) \cdots \mathrm{H}(11 \mathrm{D})-\mathrm{O}(11)$		-	164 (13)	176 (12)

Fig. 2. Projections of the crystal structures, showing the hexagonal arrangements of the dimers, and numbering of the non- H atoms. (a) 1 viewed along \mathbf{b}; (b) $2(o)$ viewed along \mathbf{b}; and (c) $2(d)$ viewed along c . Broken lines show hydrogen bonds. Symmetry code: for 1 (i) x, y, z; (ii) $-x,-y,-z$; (iii) $x, 1+y, z$; (iv) $-x, 1-y,-z$; for 2(o) (i) x, y, z; (ii) $1-x, 2-y, 1-z$; (iii) $x,-1+y, z$; (iv) $\frac{1}{2}-x$, $\frac{1}{2}+y,-z$; for $2(d)$ (i) x, y, z; (ii) $x, y, 1+z$; (iii) $x,-1+y, 1+z$; (iv) $x,-1+y, 2+z$.

The geometry of the hydrogen bonds is summarized in Table 4.

Molecular structures

Bond lengths and angles are given in Table 5. Though molecular dimensions in $2(d)$ have some inaccuracy because of the disordering and pseudosymmetry, the average values of equivalent bond lengths and angles of the independent molecules are in agreement with the corresponding values of 2(o) except the angle involving the $\mathrm{O}(11)$ atom (Table 5). In 2(o), the $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(11)$ angle is smaller than

Table 5. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

	$(X=\mathrm{C})$	$2(o)$ $(X=\mathrm{O})$	$2(d)^{*}$ $(X=\mathrm{O})$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.398(6)$	$1.398(2)$	$1.401(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.415(6)$	$1.391(3)$	$1.394(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.356(7)$	$1.375(3)$	$1.375(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.397(7)$	$1.391(2)$	$1.391(6)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.406(6)$	$1.374(1)$	$1.370(6)$
$\mathrm{C}(6)-\mathrm{C}(1)$	$1.388(6)$	$1.404(1)$	$1.404(6)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.490(6)$	$1.469(2)$	$1.459(6)$
$\mathrm{C}(7)-\mathrm{O}(8)$	$1.227(5)$	$1.230(2)$	$1.238(5)$
$\mathrm{C}(7)-\mathrm{O}(9)$	$1.305(5)$	$1.314(2)$	$1.318(5)$
$\mathrm{C}(2)-\mathrm{O}(10)$	$1.345(5)$	$1.356(2)$	$1.360(5)$
$\mathrm{C}(5)-X(11)$	$1.510(8)$	$1.387(1)$	$1.380(6)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$119.3(4)$	$119.6(1)$	$119.4(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.6(4)$	$119.6(2)$	$119.5(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.7(5)$	$120.4(2)$	$120.4(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$122.4(5)$	$120.3(2)$	$120.3(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$116.6(4)$	$120.4(1)$	$120.4(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$122.4(4)$	$119.8(1)$	$120.2(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	$119.9(4)$	$119.6(1)$	$120.5(4)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	$120.8(4)$	$120.8(1)$	$120.2(4)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(8)$	$122.2(4)$	$121.7(2)$	$123.0(4)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(9)$	$115.9(4)$	$115.8(2)$	$115.8(4)$
$\mathrm{O}(8)-\mathrm{C}(7)-\mathrm{O}(9)$	$121.9(4)$	$122.5(2)$	$121.3(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(10)$	$123.0(4)$	$122.9(2)$	$123.1(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(0)$	$118.4(4)$	$117.5(2)$	$117.4(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-X(11)$	$121.7(5)$	$117.3(1)$	$119.8(4)$
$\mathrm{C}(6)-\mathrm{C}(5)-X(11)$	$121.6(4)$	$122.3(1)$	$119.8(4)$

* Average of the values in molecules A and B. The respective values are deposited.
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(11)$ as usually found in phenols (Fukuyama, Ohkura, Kashino \& Haisa, 1973), but these angles in $2(d)$ are equal to each other as an effect of the disordering. In fact, the anisotropic thermal parameter B_{11} of $\mathrm{O}(11)$ in $2(d)$ is unusually large $[7.0$ \AA^{2} for $\mathrm{O}(11 A)$ and $7.6 \AA^{2}$ for $\mathrm{O}(11 B)$].
In the molecules of 1 and 2 an intramolecular hydrogen bond is formed between $O(8)$ and the 2 -hydroxy group (Table 4). O (8) lies closely in the plane of the benzene ring. The dihedral angle between the benzene ring and the carboxylic group is $1 \cdot 1^{\circ}$ for 1 and 1.3° for $2(o)$. The geometry of the hydrogen bond is close to that found in salicylic acid (Bacon \& Jude, 1973) and o-nitrophenols (Kagawa, Kawai, Kashino \& Haisa, 1976).

In the molecule of 1 , the inner angle at $\mathrm{C}(5)$ is smaller than the $s p^{2}$ angle as found in other methylsubstituted benzene derivatives (Domenicano, Vaciago \& Coulson, 1975).

In the molecule of 2 , the $\mathrm{C}(3)-\mathrm{C}(4)$ and $\mathrm{C}(5)-\mathrm{C}(6)$ bonds are significantly shorter than the other $\mathrm{C}-\mathrm{C}$ bonds in the benzene ring, and the $\mathrm{C}(2)-\mathrm{O}(10)$ bond is shorter than $\mathrm{C}(5)-\mathrm{O}(11)$. This fact shows the predominant contribution of a quinonoid structure such as that suggested for salicylic acid (Cochran, 1953; Sundaralingam \& Jensen, 1965; Bacon \& Jude, 1973).

Crystal structures

In the crystals of 1 and $2(o)$, the structures consist of centrosymmetric dimers linked by hydrogen bonds between the carboxylic groups. The [100] and [001] of 1 correspond to [102] and [001] of 2(o) respectively (Fig. 2). The dimers are stacked along \mathbf{b}, with a spacing of $3.42 \AA$ in 1 and $3.31 \AA$ in $2(o)$, by van der Waals interactions to form a column, in which the shortest contact is 3.363 (8) \AA for $\mathrm{C}\left(7^{\mathrm{i}}\right) \ldots \mathrm{C}\left(7^{\text {iv }}\right)$ in 1 and 3.302 (3) \AA for $\mathrm{C}\left(3^{\mathrm{i}}\right) \cdots \mathrm{C}\left(7^{\text {iii }}\right)$ in $2(o)$. The columns, related by a ctranslation and 2 axis, are packed into a distorted hexagonal array, in which the long axes of the dimers viewed along \mathbf{b} are arranged in parallel. In 1 , the columns are held together by van der Waals interactions. In $2(o)$, in addition to these interactions, there is an $\mathrm{O}-\mathrm{H} \cdots \mathrm{OH}$ hydrogen bond between molecules i and iv related by the 2_{1} axis at $x=\frac{1}{4}$ and $z=0$. The dihedral angle between the benzene rings related by the 2_{1} axis is 83.8° in 1 and 84.9° in $2(o)$, being close to 85.0° in benzene (Cox, Cruickshank \& Smith, 1958).

In the crystals of $2(d)$, the structure consists of pseudo-centrosymmetric dimers linked by hydrogen bonds between the carboxylic groups. The dimers are stacked along \mathbf{c}, with a spacing of $3.29 \AA$, by van der Waals interactions to form a column, in which the shortest contacts are 3.258 (6) \AA for $\mathrm{C}\left(7 B^{\mathrm{i}}\right) \cdots \mathrm{C}\left(3 B^{\text {ii }}\right)$ and 3.294 (6) \AA for $\mathrm{C}\left(3 A^{\mathrm{i}}\right) \cdots \mathrm{C}\left(7 A^{\mathrm{ii}}\right)$. The columns related by abtranslation are held together by hydrogen bonds between the 5 -hydroxylic groups to form a sheet in (100).

Two modes of hydrogen bonding are possible here (Fig. 3):

$$
\begin{align*}
& \cdots \mathrm{O}\left(11 B^{\mathrm{iv}}\right)-\mathrm{H}\left(11 B^{\mathrm{iv}}\right) \cdots \mathrm{O}\left(11 A^{\mathrm{i}}\right)-\mathrm{H}\left(11 A^{\mathrm{i}}\right) \cdots \tag{1}\\
& \mathrm{O}\left(11 B^{\mathrm{iii}}\right)-\mathrm{H}\left(11 B^{\mathrm{iii}}\right) \cdots
\end{align*}
$$

and
(2) $\cdots \mathrm{H}\left(11 D B^{\mathrm{iv}}\right)-\mathrm{O}\left(11 B^{\mathrm{iv}}\right) \cdots \mathrm{H}\left(11 D A^{\mathrm{i}}\right)-$ $\mathrm{O}\left(11 A^{\mathrm{i}}\right) \cdots \mathrm{H}\left(11 D B^{\text {iii }}\right)-\mathrm{O}\left(11 B^{\mathrm{iii}}\right) \cdots$.
The disordering may occur between these two. The sheets are stacked along a. Diffuse scattering and

Fig. 3. The hydrogen-bond system between 5 -hydroxylic groups of 2(d) viewed along a. Symmetry code as in Fig. 2.
doubling of the cell dimension of a or b have not been observed.

The dimers viewed along \mathbf{c} are packed in a hexagonal arrangement, and the long axes are arranged in an alternate way. However, the relative arrangements of the centers of the molecules are almost the same as $2(o)$. As a glide plane in $2(o)$ is replaced by a translation along [120] in $2(d)$, and a \mathbf{c} translation in $2(o)$ by an a glide plane in $2(d), \mathbf{a}, \mathbf{b}$ and \mathbf{c} of $2(o)$ correspond to $(\mathbf{a}+2 \mathbf{b}),-\mathbf{c}$ and $-\mathbf{a} / 2$ of $2(d)$, respectively.

Morphotropism

Formation of a column by parallel stacking of the hydrogen-bonded dimers is widely observed in the structures of benzoic acids. The modes of packing of the columns are divided into two types, parallel and alternate. Benzoic acid (Bruno \& Randaccio, 1980), 1, 2(o) and some 3- or 2-halogenobenzoic acids (Tanaka, Ashida, Sasada \& Kakudo, 1967; Ferguson \& Islam, 1975; Ferguson \& Sim, 1962, 1961) belong to the former, and salicylic acid, $2(d)$, 2-methyl, 4-methoxy and 4-bromobenzoic acids (Katayama, Furusaki \& Nitta, 1967; Bryan, 1967; Ohkura, Kashino \& Haisa, 1972) to the latter. The two types are closely related to each other as shown by the occurrence of the dimorphs and the correspondence of the crystallographic axes between $2(o)$ and $2(d)$.

The remarkable similarity of the crystal structures of benzoic acid, 1 and $2(o)$, and salicylic acid and $2(d)$ shows that the hydrogen bonding of the phenolic hydroxylic groups plays only an additional role in determining the structure.

The authors thank Professor Masao Kakudo, Dr Noritake Yasuoka and the staff of the Crystallographic Research Center, Institute for Protein Research, Osaka University, for use of the four-circle diffractometer.

References

Ashida, T. (1973). The Universal Crystallographic Computing System-Osaka. The Computation Center, Osaka Univ., Japan.
Bacon, G. E. \& Jude, R. J. (1973). Z. Kristallogr. 138, 19-40.
Bruno, G. \& Randaccio, L. (1980). Acta Cryst. B36, 1711-1712.
Bryan, R. F. (1967). J. Chem. Soc. B, pp. 1311-1316.
Cochran, W. (1953). Acta Cryst. 6, 260-268.
Cox, E. G., Cruickshank, D. W. J. \& Smith, J. A. S. (1958). Proc. R. Soc. London Ser. A, 247, 1-21.

Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 221-234.
Ferguson, G. \& Islam, K. M. S. (1975). Cryst. Struct. Commun. 4, 389-392.
Ferguson, G. \& Sim, G. A. (1961). Acta Cryst. 14, 1262-1270.

Ferguson, G. \& Sim, G. A. (1962). Acta Cryst. 15, 346350.

FujiI, S. (1979). The Universal Crystallographic Computing System-Osaka. The Computation Center, Osaka Univ., Japan.
Fukuyama, K., Ohkura, K., Kashino, S. \& Haisa, M. (1973). Bull. Chem. Soc. Jpn, 46, 804-808.

Haisa, M. (1978). Acta Cryst. A 34, 753-759.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72-73. Birmingham: Kynoch Press.
Kagawa, T., Kawai, R., Kashino, S. \& Haisa, M. (1976). Acta Cryst. B32, 3171-3175.

Kashino, S. \& Haisa, M. (1980). Acta Cryst. B36, 346-353.
Katayama, C., Furusaki, A. \& Nitta, I. (1967). Bull. Chem. Soc. Jpn, 40, 1293.
Ohkura, K., Kashino, S. \& Haisa, M. (1972). Bull. Chem. Soc. Jpn, 45, 2651-2652.

Sundaralingam, M. \& Jensen, L. H. (1965). Acta Cryst. 18, 1053-1058.

Tanaka, N., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Bull Chem. Soc. Jpn, 40, 2717.

Acta Cryst. (1982). B38, 1485-1489

The Structure of Benzyl 4-O-(2,3-Dideoxy- α-L-pent-2-enopyranos-4-ulosyl)-2,3-O-isopropylidene- α-L-rhamnopyranoside

By J. W. Krajewski, G. Grynkiewicz, P. Gluziński, Z. Urbańczyk-Lipkowska and A. Zamojski
Institute of Organic Chemistry, Polish Academy of Sciences, 01-224, Warszawa, Poland
and K. Stadnicka
Institute of Chemistry, Jagiellonian University, 30-060 Kraków, Poland

(Received 20 May 1981; accepted 17 November 1981)

Abstract

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{7}$, m.p. $376 \mathrm{~K}, M_{r}=390 \cdot 42$, is monoclinic, space group $P 2_{1}$, with $a=9.797$ (2), $b=8.739$ (2), $c=12.141$ (3) $\AA, \beta=91.90(2)^{\circ}, Z=2, d_{m}=1.19$, $d_{c}=1.25 \mathrm{Mg} \mathrm{m}^{-3}$. The structure was solved by direct methods and refined by the full-matrix least-squares procedure to $R=0.043$ ($R_{w}=0.039, w=1 / \sigma_{I}^{2}$) for 1281 independent reflections with $I>2 \sigma_{I}$. The unsaturated dihydropyranone ring was found to have the ${ }^{\circ} H_{5}$ half-chair conformation. The rhamnopyranose ring exhibits the ${ }^{1} C_{4}(L)$ chair conformation strongly deformed due to fusion with the non-planar dioxolane ring. The interglycosidic φ and ψ angles are 29 (4) and 27 (2) ${ }^{\circ}$ respectively.

Introduction

The stannic-chloride-catalyzed reaction between benzyl 2,3-O-isopropylidene- α-L-rhamnopyranoside and 1-O-benzoyl-2,3-dideoxy-dL-pent-2-enopyranos-4-ulose yields a mixture of two diastereoisomeric benzyl 4-O-(2,3-dideoxy- α-L-pent-2-enopyranos-4-ulosyl)-2,3-O-isopropylidene- α-L-rhamnopyranosides (Grynkiewicz, 1980). These compounds are the precursors of
disaccharides belonging to the 4-O-pentopyranosyl-L-rhamnose family; the disaccharides can be obtained by proper chemical modifications of the dihydropyranone moiety.

From the mixture of two diastereoisomeric products the less polar one (Fig. 1), melting at 376 K , was separated by column chromatography and its molecular structure determined. The reasons for undertaking the present study were to determine: (a) the

Fig. 1. Haworth formula of the title compound with the systematic atom numbering.

[^0]: * Lists of structure factors, anisotropic thermal parameters, bond lengths and angles involving H atoms and least-squares planes of benzene rings for $1,2(o)$ and $2(d)$, and bond lengths and angles of respective molecules of $2(d)$ have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36568 (20 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

